Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Environ Qual ; 53(2): 174-186, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38297136

RESUMEN

Land application of water treatment residual (WTR) in combination with phosphate-rich organic wastes, like compost or sewage sludge, in nutrient-poor soils was previously shown to promote crop growth. This WTR diversion from landfill to agriculture supports local and international mandates for waste circularity. Although soil-water dynamics-like saturated hydraulic conductivity, water retention, and hydrophobicity-are well-defined for compost and somewhat defined for WTR (except for hydrophobicity), the impacts of co-amending sandy soils with both are not well-defined. In laboratory analyses, co-amendment had an intermediate effect between individual amendments on the hydrophobic sandy soils, increasing water retention by 27% (WTR and compost both increased water retention), decreasing hydrophobicity by increasing hydraulic conductivity twofold (WTR and compost both decreased hydrophobicity), and having no effect on saturated hydraulic conductivity (decreased by WTR and increased by compost). With two positive effects and one "no effect" on soil-water dynamics in laboratory trials, the co-amendment was expected to buffer both crop water use efficiency (WUE) and nutrient availability under drought stress, for Swiss chard (Beta vulgaris L. var. cicla), co-investigated in a multifactorial pot trial. Soil nutrients, particularly phosphate, were shown more critical than soil-water dynamics to improve crop WUE. Thus, co-amended soils have significantly higher crop biomass and WUE than sandy soils. Phosphate-rich organic co-amendment is necessary for crop nutrient sufficiency and thus drought resilience in sandy soils amended with WTR. Thus, pairing wastes to soils for optimum fertility is a critical consideration in waste land application for both biomass and drought resilience.


Asunto(s)
Compostaje , Purificación del Agua , Suelo/química , Agricultura , Aguas del Alcantarillado , Fosfatos
2.
J Environ Qual ; 50(6): 1381-1394, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34464455

RESUMEN

Water treatment residual (WTR) is composed of sludges from the potable water treatment process, currently largely destined for landfill. This waste can be diverted to rebuild degraded soils, aligning with the UN's Sustainable Development Goals 12 (Consumption and Production) and 15 (Terrestrial Ecosystems). Biosolids are tested against stringent pathogen guidelines, yet few studies have explored the microbial risk of WTR land application, despite anthropogenic impacts on water treatment. We explored the microbial risks and benefits of amending nutrient-poor sandy soil with WTRs. Our results showed that the culturable pathogen load of wet and dry WTRs did not warrant pre-processing before land application, according to South African national quality guidelines, with fecal coliforms not exceeding 104 colony forming units per gram dry weight in wet sludges sampled from four South African and Zimbabwean water treatment plants and decreasing upon drying and processing. There was no culturable pathogenic (fecal coliforms, enterococci, Salmonella, and Shigella) regrowth in soil incubations amended with dry WTR. However, the competition (microbial load and diversity) introduced by a WTR co-amendment did not limit pathogen survival in soils amended with biosolids. Application of WTR to nutrient-poor sandy soils for wheat (Triticum aestivum L.) growth improved the prokaryotic and eukaryotic culturable cell concentrations, similar to compost. However, the compost microbiome more significantly affected the bacterial beta diversity of the receiving soil than WTR when analyzed with automated ribosomal intergenic spacer analysis. Thus, although there was a low pathogen risk for WTR amendment in receiving soils and total soil microbial loads were increased, microbial diversity was more significantly enhanced by compost than WTR.


Asunto(s)
Suelo , Purificación del Agua , Efectos Antropogénicos , Ecosistema , Medición de Riesgo , Microbiología del Suelo
3.
Exp Brain Res ; 203(2): 381-9, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20390256

RESUMEN

Autism spectrum disorders (ASD) form a continuum of neurodevelopmental disorders, characterized by deficits in communication and reciprocal social interaction, as well as by repetitive behaviors and restricted interests. Sensory disturbances are also frequently reported in clinical and autobiographical accounts. However, surprisingly few empirical studies have characterized the fundamental features of sensory and multisensory processing in ASD. The current study is structured to test for potential differences in multisensory temporal function in ASD by making use of a temporally dependent, low-level multisensory illusion. In this illusion, the presentation of a single flash of light accompanied by multiple sounds often results in the illusory perception of multiple flashes. By systematically varying the temporal structure of the audiovisual stimuli, a "temporal window" within which these stimuli are likely to be bound into a single perceptual entity can be defined. The results of this study revealed that children with ASD report the flash-beep illusion over an extended range of stimulus onset asynchronies relative to children with typical development, suggesting that children with ASD have altered multisensory temporal function. These findings provide valuable new insights into our understanding of sensory processing in ASD and may hold promise for the development of more sensitive diagnostic measures and improved remediation strategies.


Asunto(s)
Percepción Auditiva/fisiología , Trastornos Generalizados del Desarrollo Infantil/fisiopatología , Ilusiones/fisiología , Percepción Visual/fisiología , Estimulación Acústica , Adolescente , Análisis de Varianza , Atención/fisiología , Niño , Femenino , Humanos , Masculino , Pruebas Neuropsicológicas , Estimulación Luminosa , Tiempo de Reacción/fisiología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA